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Abstract

A broadcast mode may augment peer-to-peer overlay
networks with an efficient, scalable data replication func-
tion, but may also give rise to a virtual link layer in VPN-
type solutions. We introduce a generic, simple broadcasting
mechanism that operates in the prefix space of distributed
hash tables without signaling. This paper concentrates
on the performance analysis of the prefix flooding scheme.
Starting from simple models of recursive k-ary trees, we an-
alytically derive distributions of hop counts and the repli-
cation load. Further on, extensive simulation results are
presented based on an implementation within the OverSim
framework. Comparisons are drawn to Scribe, taken as a
general reference model for group communication accord-
ing to the shared, rendezvous-point-centered distribution
paradigm. The prefix flooding scheme thereby confirmed
its widely predictable performance and consistently outper-
formed Scribe in all metrics. Reverse path selection in over-
lays is identified as a major cause of performance degrada-
tion.

Keywords: Prefix flooding, DHT, random recursive k-

ary trees, overlay network simulation, Pastry, Scribe

1. Introduction

A broadcast service is commonly supported on the net-

work and data link layer. Analog to the IP layer, application

overlays may require the use of an unselective group com-

munication. Distributed Hash Tables (DHT) like Chord [12]

∗This work is supported in part by the German Bundesmin-

isterium für Bildung und Forschung within the project Moviecast
(http://moviecast.realmv6.org).

†The author is also with HAW Hamburg, Dept. Informatik, and with

link-lab, Berlin.

and Pastry [11] do not consider broadcast, i.e., a mechanism

to communicate to all parties of one DHT instance without

their active participation.

The broadcast mode admits two unique features. The a

priori awareness of the data flooding task may significantly

enhance efficiency, e.g., by taking advantage of network or

(shared) media specifics. Further on, it enables a message

exchange among mutually unknown parties without a re-

quirement of specific service awareness or any form of sig-

naling. Broadcast is thus the fundamental mechanism for

unselective data synchronization and for the autonomous

coordination of distributed systems.

On the application layer, there are likewise versatile use

cases for broadcast communication. Applications range

from broadband data dissemination in video conferencing

or data replication, over service and peer discovery up to

the implementation of a virtual link layer in VPN-type so-

lutions.

Broadcast is a special case of multicast. This distribution

mechanism guarantees to reach not only a subset, but all

nodes of a dedicated domain without explicit registration.

The set of all nodes is also called the broadcast domain. It

is worth noting that a broadcast domain can be arranged on

different layers with varying inherent capabilities. Connect-

ing nodes, e.g., with an Ethernet hub to a shared segment

facilitates packet distribution based on the physical network

structure. It is limited by the supporting medium, i.e., the

range of signal propagation. The equivalent holds for the

wireless domain, where the medium is always shared, but

of restrictive propagation ranges. Participating nodes do

not need a specific network logic in sending and receiv-

ing broadcast data on the physical layer. Broadcast sup-

port, however, on a dedicated layer should be independent

of the underlying tier, which may accelerate it. In the ex-

ample of IP, broadcast addresses will be directly mapped to

the Ethernet broadcast address, such that all Ethernet hosts
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of one segment receive the data independent of their subnet

assignment, but in contrast to network access, packets can

be forwarded on the network layer beyond physical bounds.

In general, broadcast in logical networks can be enabled

by passing data incrementally to direct overlay neighbors. If

the graph of nodes is connected and contains the source, all

nodes will be reached. DHT structures allow to derive such

a connected neighborhood graph. Any node can send pack-

ets to an address adjacent to its own key space. In contrast

to IP, every possible address is associated with one overlay

peer. Such a simple ring broadcast scheme sends the packet

to exactly one neighbor, reaching all n DHT peers after n
hops. As an alternative approach to the case of unknown

neighborhoods, a dedicated, well-known replicator can be

placed in the network like the Broadcast and Unknown

Server in ATM. Such a rendezvous point-based approach re-

quires extra signaling to register receivers. The parallelism

of distribution is bounded by the replicator, which sustains

the overall duplication load and may be a single point of

failure.

In the following, we will present a general broadcast al-

gorithm along with optimizations for Pastry, that uses the

DHT structure more efficiently and replicates data stepwise

to all neighbors in prefix space. This scheme works without

peer involvement, especially without signaling. We model

and analyze the approach theoretically and in simulation,

drawing comparison to a generic rendezvous point approach

derived from Scribe [3].

This paper at first gives an introduction of the prefix

flooding algorithm in the next section and continues as fol-

lows. Section 3 presents an overview of the performance

measures applied in our analysis, while analytical models

are utilized in section 4 to derive distributions for the core

properties of replication load and hop count. Results of our

simulation studies are outlined in the subsequent section 5.

Related work is reviewed in section 6, followed by a final

discussion and conclusion in section 7.

2. Broadcast by Prefix Flooding

For an efficient application layer broadcast we need to

define a strategy for data replication on the overlay. In

a DHT, the peer identifiers are composed using an alpha-

bet of k digits and have a predefined length. All nodes of

a structured overlay can be naturally arranged in a prefix

tree, branching recursively at longest common prefix of k
neighboring vertices. The leaves are labeled with the over-

lay identifiers of the DHT members and the inner vertices

represent the shared prefix (cf. figure 1).

This tree can be interpreted as a distribution tree, defin-

ing the broadcast domain of a specific DHT instance. If a

broadcast packet is sent starting from the root of the tree

towards the leaves, the packet will be replicated where pre-
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Figure 1. DHT Node within a Prefix Tree –
Associated Vertices are Highlighted.

fixes branch. Actually, the broadcast domain (prefix tree)

decomposes in many smaller broadcast sub-domains (sub-

trees), in which the propagations continue in parallel. Fol-

lowing the nature of broadcast, a packet will be forwarded

locally, after it has arrived at a root of a subtree.

This approach allows to reach all peers of a DHT, be-

cause the data is flooded to the leaves, which represent the

overlay nodes. A peer receiving a broadcast is required to

determine the current branching position on the distribution

tree to decide on further packet replication. This context

awareness can be achieved by sending broadcast packets

carrying the prefix currently addressed, which we call des-
tination prefix. This destination prefix will grow in length

with every forwarding hop while descending the tree.

We denote the length of a prefix A by |A|. Given two

prefixes A and B, the longest common prefix will be written

L = LCP (A,B). The relation of L being a prefix of A is

written as L ⊆ A. Consequently L ⊆ A and A ⊆ L if and

only if L = A.

A proper specification for data distribution, i.e., a routing

procedure on prefix trees, requires further definitions. The

two sub-problems that need to be solved are a routing to a
prefix and the association of nodes with prefixes:

Definition 1 A prefix L is associated with an overlay node
of ID N , if and only if L ⊆ N .

As shown in figure 1, all inner vertices on the shortest path

from the root to a node are associated with that node.

Concordantly, a prefix routing can be defined as forward-

ing a packet to the node the destination prefix is associated

with. In general, there may be several nodes owning an

associated prefix, since prefix-to-node mapping is only as-

sured to be unique for prefixes of full key length. For flood-

ing a prefix tree, a forwarding peer needs to route packets to

all ’live’ neighboring prefixes (cf. figure 1). Consequently,

a peer must store corresponding nodes for each prefix adja-

cent to its associated vertices in a prefix neighbor set. It is

important that these tables are complete. A complete neigh-
bor set meets the following condition: Whenever an over-

75



lay node exists for a given prefix, then the neighbor set will

provide an entry for this prefix. In particular it follows that

each overlay node is a destination in at least one set, since

node keys are uniquely assigned. It is worth noting that a

prefix needs not to be included in any neighbor set, if there

is no peer sharing it. The requirement of complete neigh-

bor tables will usually be fulfilled by the key-based routing

service, i.e., underlying DHT routing maintenance.

A source initiates a broadcast by starting with the empty

destination prefix. This corresponds to delivering the data to

all prefix neighbors Ni. At each neighbor a packet will be

further replicated. The destination prefix is replaced with

the new target address. In detail, the algorithm works as

follows:

PREFIX FLOODING

� On arrival of a packet with destination prefix C
� at a DHT node

1 for all Ni IDs in prefix neighbor set

2 do if (LCP (C,Ni) = C) � Ni downtree neighbor

3 then Cnew ← Ni

4 FORWARD PACKET TO Cnew

If an inner vertex of the prefix tree fails, e.g., due to

churn, the corresponding sub-tree is empty or includes fur-

ther peers. The replacement of the next hop for a given pre-

fix Cnew will be achieved by the underlying DHT. In gen-

eral, in the case of overlay network failures the reliability of

prefix flooding relies directly on the deployed DHT mainte-

nance.

If all peers have a complete set of prefix neighbors, the

scheme guarantees that all overlay nodes will be accessed,

no peer receives a broadcast packet more than once and the

algorithm terminates.

Theorem 1 (Coverage) If the prefix neighbor sets are com-
plete at all nodes, then the PREFIX FLOODING assures
packet distribution to all overlay nodes.

Theorem 2 (Uniqueness) Each overlay node will receive
a broadcast packet at most once using the PREFIX FLOOD-

ING.

Complete proofs for both theorems are elaborated in

[14]. Theorem 1 can be proven by induction over the num-

ber of overlay nodes, while theorem 2 follows from the

observation that each routing prefix uniquely identifies the

root of a subtree in prefix space.

From theorem 2 it can be concluded that the PREFIX

FLOODING does not induce loops, proving the assumption

that the algorithm terminates.

2.1. Implementation for Pastry

The idea of prefix routing is implemented in Pastry. The

Pastry routing table of a peer reflects directly the elements

of a prefix tree. Thus each peer carries a subset of the prefix

tree in its routing table. Merging the routing tables of all

peers, would form the global distribution tree. In flooding

their routing tables, Pastry peers flood the prefix tree, which

corresponds to the overlay broadcast described by the PRE-

FIX FLOODING. In detail, the idea is as follows: A source

sends its data to all routing table entries. Each destination

prefix corresponds to the root of a broadcast sub-domain.

The receiving peers determine their position in the tree, i.e.,

the height D in the prefix tree, at which they receive the

data, and forward the packets downwards. This is equal to

sending data to all routing table entries starting at row D+1.

Note that the tree position can easily be derived by denoting

the row number, which reduces the packet size in contrast to

encoding the entire key. For Pastry the PREFIX FLOODING

reads in pseudo code:

PASTRY PREFIX FLOODING

� On arrival of a packet with destination prefix length

� D at Pastry node of ID K with routing table A
� containing l rows and k columns

1 for all i ← D + 1 to l
2 do for all j ← 1 to k
3 do if ai,j �= Unspecified ∧ ai,j �= K
4 then Dnew ← i
5 FORWARD PACKET TO ai,j

If the routing table is filled correctly, all theorems for the

PREFIX FLOODING are also valid for Pastry, since the Pas-

try routing table corresponds to the set of prefix neighbors

{Ni}. However, Pastry reactive maintenance does not guar-

antee that each overlay node will provide complete routing

states [11], which conflicts with the PREFIX FLOODING.

Therefore we augmented Pastry with a proactive routing

maintenance mechanism, which performs initial key look-

ups to fill the routing table similar to the “fix fingers” rou-

tine in Chord.

3. Performance Measures

The prefix flooding approach to broadcasting introduces

prefix trees as a control plane to packet forwarding. This

simple mechanism operates without additional signaling,

which is an apparent advantage. The quality of the routing

as inherited from a hash-generated prefix tree needs closer

inspection. Ideally, packet distribution should be fast and

minimize traffic and replication load in the network. To ob-

tain an overall insight into the routing quality, we evaluate

the prefix flooding scheme in theory and in a discrete event
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simulation according to the following metrics and compare

our results to Scribe [3]. Scribe serves as a generic refer-

ence model for schemes using dedicated replicators, and is

based on the same DHT, Pastry. It is worth noting that the

performance metrics do not measure the multicast specific

properties of Scribe. Thus, choosing Scribe for comparison

is reasonable.

Packet replication load quantifies the number of pack-

ets a single peer has to forward. This metric reflects the

number of direct neighbors per node in the distribution tree.

The overall characteristic for the prefix routing is then given

by the distribution of the replication load obtained from all

forwarding nodes.

Hop count counts the number of overlay routing traver-

sals that a packet needs on its way from the source to the

destination. Note that the hop count affects the travel time,

because every additional hop results directly in an addi-

tional transmission time. In this sense the travel time is

correlated with the hop count.

Travel time describes the time a data packet travels from

the source until it reaches a receiver measured in seconds.

This absolute value depends on the one hand on the number

on hops between the nodes and on the other hand of the

transmission time inherited from the hop by hop link delays

and the packet size of the transmitted data.

Relative delay penalty measures the ratio of the travel

time for data packets delivered via Scribe and the travel

time resulting from the prefix flooding scheme. This rel-

ative factor gives an indication of the parallelism of packet

forwarding.

4. Analytical Models

To understand the performance of the prefix flooding

scheme, we first present analytical considerations. Based

on the shape of the prefix tree, we gain insight in the struc-

tural behavior of protocols for traversing prefix distribution

trees. As this analysis is only based on the tree itself, fringe

effects known from simulations are isolated.

4.1. Replication Load

In the following, we want to derive the distribution of

the replication load in a prefix tree. For the general case of

prefix flooding in a structured overlay of N nodes using a

prefix alphabet of k digits, the following upper bound of the

replication load can be derived immediately.

Theorem 3 Any overlay node in a prefix flooding domain of
N receivers and an alphabet with k ≥ 2 digits will replicate
a data packet at most log2(N)(k − 1) times.

For the distribution function of the replication load in a

fully populated prefix tree, we need to determine replication

h

h − j

j
k

Figure 2. Self-Similarity of Prefix Subtrees
due to the Recursive Nature of k-ary Trees

values along with their frequencies. Recalling the picture of

a full prefix tree for an alphabet with k digits, every node ex-

cept the leaves has k children. The number of packet repli-

cations for an overlay peer is equal to the overall number of

forwarding neighbors, which depends on the tree position,

where a peer receives the packet. Per level the replication

load is k − 1. Consequently, in a fully populated k-ary pre-

fix tree of height h, replication occurs only at multiples of

k − 1, the number of neighbors in prefix space. For j ≥ 0
we denote these discrete values by vh,k(j) = (h−j)(k−1).

To derive the replication frequency, we quantify the oc-

currence of the replication load vh,k(j). Since we know the

load of a peer forwarding packets at height j, the frequency

can be calculated by counting the number of peers that ful-

fill the replication condition. The latter corresponds to the

number of (sub-)trees with height h− j, because every peer

serves as forwarder for one tree. Starting at the source in a

full prefix tree, the structure decomposes in k − 1 subtrees

with height h − 1, k(k − 1) subtrees of height h − 2, etc.

(cf. figure 2). At every level of the full prefix tree, there is

an exponential growth in the number of inner vertices rep-

resenting the root of new subtrees. Thus, the frequency of

(h− j)-size subtrees must increase exponentially with their

decreasing height. In detail there are kj−1 · (k − 1) sub-

trees of height h − j, which account for a replication load

of (h − j) · (k − 1).

Theorem 4 Given a fully populated k-ary prefix tree of
height h. Then the frequency fh,k(vh,k(j)) for a replica-
tion load vh,k(j) = (h − j)(k − 1) is given by

fh,k(vh,k(j)) =
{

1 for j = 0
kj−1 · (k − 1) for 0 < j ≤ h.

(1)

Proof by induction. We assume a full k-ary prefix tree of

height h. The case j = 0 corresponds to the (single) source

that replicates data to h(k − 1) neighbors as derived above.

The induction is done with respect to h− j, the height of

a subtree (cf. fig. 2).

Base case: Is h − j = 1, we have to show that the repli-

cation load vh,k(h − 1) appears (k − 1)-times. In a tree
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of height 1, the source sends the data to all further leaves

directly, which equals k − 1.

Induction step: Assume the statement holds for h − j.

We have to show that the statement holds for h− j +1, i.e.,

fh,k(vh,k(h − j + 1)) = kh−j(k − 1).
Consider a full prefix tree of height h− j +1. It consists

of k subtrees of height h− j. The replication load of a node

in a tree of (h − j + 1) equals the sum of all neighbors in

these k subtrees. Using the induction hypothesis the overall

replication load reads

k · fh,k(vh,k(h− j)) = kkh−j−1(k− 1) = kh−j(k− 1).

The overall number of packet replications is easily iden-

tified as the number of leave nodes, since there are no packet

duplications and each peer receives the broadcast. The num-

ber of leaves of a full k-ary tree of height h equals kh, such

that we arrive at the following

Corollary 1 The probability distribution Ph,k for packet
replication multiplicities reads

Ph,k(vh,k(j)) =

⎧⎨
⎩

k−h for j = 0
kj−h−1 · (k − 1) for 1 ≤ j ≤ h
0 otherwise.

(2)

Corollary 2 The average replication load for a node in a
full prefix tree Th,k is given by 1 + O(k−h), its standard
deviation by

√
k + O(k−h).

Observing the weak dependence of the replication load

distribution on h and k, i.e., the tree shaping parameters,

it can be assumed that the model is sufficiently general to

grant insights into the qualitative replication behavior of a

sparsely populated k-ary trees. We will see in section 5 that

the simulations support this assumption.

4.2. Hop Count

As for the replication load, we firstly derive general mea-

sures of the number of hops a packet travels from the source

to any destination in the prefix flooding scheme.

Theorem 5 Any overlay node in a structured broadcast do-
main of N receivers and an alphabet with k ≥ 2 digits will
receive a packet from prefix flooding after at most log2(N)
hops. In the presence of Pastry overlay routing, the number
of hops attained on average equals log2b(N) with k = 2b.

We now want to return to considering a fully populated

prefix tree and derive the hop distribution thereof. The main

idea is similar to the replication load: A forwarding peer

sends the broadcast to k − 1 prefix neighbors, all of them

rooting an equally structured subtree of height h−1. We are

counting the number of paths with a length reduced by one

herein. Additionally we count the frequency of paths for

the calculated hop count in the virtual subtree containing

the forwarder. This recursion results in

Theorem 6 Given a fully populated k-ary prefix tree of
height h, the frequency fh,k(j) of a hop count j occurring
in prefix flooding is given by

fh,k(j) =
(

h

j

)
(k − 1)j . (3)

Proof. A flooding packet arriving at node n after j hops will

admit a current destination prefix of length j. Being located

in a subtree of height h − j, n will forward the packet to

its downtree neighbors, thereby partitioning its subtree into

k−1 further subtrees of height h− j−1 (cf. figure 2). Due

to the recursive nature of the k-ary prefix tree, the frequency

distribution satisfies the recurrence relation

fh,k(j) = fh−1,k(j) + (k − 1) · fh−1,k(j − 1) (4)

with initial conditions f1,k(0) = 1, f1,k(1) = k − 1.

Inserting fh,k yields the claim.

This result can be interpreted in two different ways.

Among all legitimate paths in downtree routing, i.e., of

length h, those of length j are selected and branch k − 1
times at each of the j intermediate prefix nodes. Alterna-

tively, flooding corresponds to a node discovery process,

where a node discovers its vh,k(j) = (h− j)(k − 1) neigh-

bors which in turn discover their neighbors in the following

step. Subsequent neighbor discovery requires connect to

the j-th part as only (h − j)(k − 1)/j nodes have further

neighbors.

Following a similar argument as in corollary 1, it is clear

that normalization for hop count frequencies is given by kh,

the number of leaf nodes in the full prefix tree.

Corollary 3 The probability distribution Hh,k(j) of the
hop count for flooding a full prefix tree Th,k evaluates to

Hh,k(j) = k−h ·
(

h

j

)
(k − 1)j . (5)

Corollary 4 The average hop count at which a packet is
received from flooding in a full prefix tree Th,k is given by
< Hh,k >= (k−1)/k ·h, the standard deviation of the hop
count distribution (5) equals σHh,k

=
√

(k − 1) · h/k.
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This average is almost independent of the prefix alphabet

k and can be in some sense interpreted as the counterpart

of the average replication load as seen in corollary 2. As

the average number of per hop replications is close to one,

packets travel down the entire tree and reach most of their

receivers after nearly h hops. The width of the hop count

distribution, its standard deviation, admits a weak depen-

dence on k, slowly decaying from its maximum at k = 2 as

k−1/2.

In contrast to the replication load distribution, which

showed only a weak dependence on the tree shaping pa-

rameters, the hop count results strongly depend on h for the

fully populated k-ary tree. The height h is directly related to

the number of nodes kh in this tree, which does not hold for

realistic scenarios. Thus a direct transfer to sparsely popu-

lated random trees is questionable.

To derive a distribution for general distribution trees,

evaluations are required on the class of all random k-ary
trees. Unfortunately, this turns out to be difficult. Pro-

ceeding in a significantly simpler, but reasonable approach,

we restrict the analysis to the class of random recursive k-
ary trees with a homogeneous probability p for independent

edges. In this model, each vertex branches to each of its

k− 1 possible outdegrees independently with probability p,

thereby preserving the recursive nature of the fully popu-

lated k-ary tree. Instead of equation 4, the hop frequency of

routing on this random recursive tree will be governed by

the modified rate equation

fh,k(j) = fh−1,k(j) + p · (k − 1) · fh−1,k(j − 1) (6)

with f1,k(0) = 1, f1,k(1) = p(k − 1).

This can be solved analogously to 4 and yields

Corollary 5 The probability distribution H
(p)
h,k(j) of the

hop count for flooding a random recursive k-ary prefix tree
T

(p)
h,k with homogeneous, independent edge probability p

evaluates to

H
(p)
h,k(j) = (1 + p(k − 1))−h ·

(
h

j

)
· (p(k − 1))j , (7)

which attains the average value < H
(p)
h,k > = p(k−1)

1+p(k−1) ·h,

and the standard deviation σ
H

(p)
h,k

=
√

p(k−1)·h
1+p(k−1) .

The introduced edge probability p is not a ’free’ pa-

rameter, but a function of the number of leaf nodes N =
(1 + p(k − 1))h in the tree. Solving this relation for

p =
h√

N−1
k−1 , and inserting typical Pastry parameters for

k = 16, h = 128 and node numbers of our simulations,

will lead to the relatively small edge probabilities, mean hop

counts and standard deviations displayed in table 1.

k = 16, h = 128
N 10 100 1.000 10.000

p 0.00122 0.00244 0.00370 0.00497

< H
(p)
h,k > 2.30 4.52 6.73 8.88

σ
H

(p)
h,k

1.50 2.09 2.53 2.87

Table 1. Selected Link Probabilities, Mean
Hop Counts and Standard Deviations.

These analytical results will not only support a qualita-

tive insight into the mechanisms of prefix-based packet dis-

tribution, but will also show significant agreement with the

simulation results presented in the subsequent section.

5. Simulation Results

In this section, we will analyze the performance of the

prefix flooding based on a stochastic discrete event simula-

tion and compare to the behavior of the rendezvous point-

based approach Scribe. Both, the prefix flooding and Scribe,

are implemented on top of a proactive version of the DHT

substrate Pastry.

In detail, our simulations are performed on the network

simulator platform OMNeT++ 3.3 [13], supplemented by

a preliminary version of the overlay simulation package

OverSim [2] including Scribe and extended by the prefix

flooding implementation. Pastry has been configured as in

its original version [11]. Especially, we use a key length

of 128 and an alphabet size of 16, if not mentioned other-

wise. To investigate the scaling behavior of the protocols,

the simulations are conducted for a number of peers varying

by three orders of magnitude. None of the relative metrics

described in section 3 depend on the underlay. Thus the

Simple model [1] has been applied as the underlying net-

work with a homogeneous link delay of 1 ms to analyze the

network properties inside the overlay.

The analysis is not focusing on reliability aspects, which

allows us to neglect churn. In particular, any effects of

volatile nodes would be completely maintained by Pastry

for the prefix flooding and partially for Scribe. Rendezvous

point (RP) based schemes have to reorganize the distribu-

tion tree due to failing RPs, resulting in DHTs by new key

associations, which nevertheless is not addressed here.

Summarizing the simulation scenario, we calculate the

flooding performance on an arbitrary (k = 16)-ary pre-

fix tree with a fixed maximal height and a varying number

of leaves interconnected by links of identical weight. The

broadcast will be initiated by a randomly selected leaf.
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Figure 3. Distribution of Packet Replication Comparing Prefix Flooding with Scribe
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Figure 4. Hop Count Distribution for an Overlay of Size N
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5.1. Replication Load

The distributions of the peer replication load for prefix

flooding and Scribe are displayed in figure 3. Both schemes

show an exponential decay around their common average

value of 1. However, the shapes of the distributions for the

two approaches vary significantly, which becomes apparent

at first from standard deviation values. While the widths

of the distributions for prefix flooding are small und almost

independent of network sizes, the corresponding values for

Scribe grow large, about linearly in the number of nodes.

Both broadcasting schemes produce a large number of

replications of values 0 and 1, but frequencies drastically

drop for higher multiplicities. Prefix flooding distribution

attains a much smoother decay, leaving significant proba-

bility to replication values of 2 − 10. Smoothness is even

more pronounced for smaller alphabets, which for space re-

strictions are omitted here. In contrast, Scribe decreases

faster from its average, decaying rapidly to probabilities be-

low 1/100 for replications larger than 2, fairly independent

of the alphabet k.

An exception from this overall shape can be observed

for the distribution of 10 peers in Scribe. Here, the frequen-

cies of replication values around 9 are strongly enhanced.

This border effect for very small networks can be under-

stood from analyzing distribution tails. As visualized in

the log-log plot 3(d), the distribution of Scribe is heavy-

tailed according to a power law decay, representing remark-

ably high probabilities for very large replication values up

to 7800. Corresponding probabilities are accumulated for

small sized overlays.

In contrast, the prefix flooding distribution admits a strict

exponential decay, with tail weights vanishing above 50.

Replication values in prefix flooding are superimposed by

oscillating frequencies as visible in figure 3(c). The result-

ing probability “bumps” are noticeable on different scales

for all overlays and can be explained by our theoretical anal-

ysis, which reveals an exponential decay within the range

of multiples of (k − 1). Compared to the prerequisites of

corollary 1, the simulated overlays do not operate on full

k-ary prefix trees. Hence replication values do not only oc-

cur as multiples of the branching factor, but level out with

neighboring values. Nevertheless, regarding the peaks of

the bumps, the population and replication pattern of the k-

ary trees remain clearly visible.

In both approaches, most of the peers receive the broad-

cast without a need to forward it further. Scribe thereby

stresses a small number of peers to serve a much higher

replication load. Instead, the prefix flooding reduces the

maximal replication load by distributing the load evenly

over the neighbors.

5.2. Hop Count

The mean hop count distribution for different overlay

sizes is shown in figure 4. In general, both schemes show

the logarithmically growing hop path length dependent on

the number of peers. With an increasing quantity of leaves,

the height of prefix trees will increase logarithmically, as

well, resulting in longer paths from the source and inter-

mediate forwarders to the receivers. The mean hop count

< X > for Scribe highlights approximately one additional

node in contrast to the prefix flooding.

For a sufficiently large N > 10, the average of the distri-

bution for the prefix flooding attains directly the calculated

mean hop count in theorem 5, at which all other hop count

values are centered. The hop count distribution in Scribe

shows a heavy-tailed behavior, which increases with the

overlay size as indicated by the approximate linear growth

of the standard deviation. In contrast, the prefix flooding

almost attains a constant variation. Consequently, in pre-

fix flooding the path lengths are tightly concentrated around

the logarithmically bounded average, while Scribe builds up

longer branches with higher weights.

5.3. Relative Delay Penalty

Figure 5 shows the relative delay penalty (RDP) as func-

tion of the network size for Scribe over prefix flooding.

Scribe packets travel about a factor of 1.4 slower than data

of prefix flooding in larger networks. The enhanced delay

penalty in small networks of about 10 peers reflects the ob-

servations of figure 3(b) that almost all receivers are ad-

dressed directly by the rendezvous point, which replicates

the full number of overlay nodes. The more keys are al-

located, the more branching points are located close to the

RP resulting in longer paths and less efficient parallelism in

Scribe, which is in contrast to the prefix flooding.

6. Related Work

The principal approach for implementing broadcast on

a pure DHT derives from recursive partitioning of the key

space with data distribution following partition ranges. The

prefix flooding operates in this sense, defining numerical in-

terval boundaries from prefix transitions. The first idea of

a broadcast based on nested intervals was proposed in [5].

The broadcast is sent to intervals of exponentially increas-

ing scale as derived from the Chord routing table.

A generalization of [5] is proposed in [6]. In addition to

a design independent of Chord, the authors enhance their al-

gorithm by reliability routines, which guarantee a broadcast

distribution independent of the routing table states. This is

performed by delegating data delivery for missing entries to

subsequent forwarders.
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Figure 5. RDP for Scribe over Prefix Flooding

The authors in [8] introduce a scheme, which splits the

key space in d partitions of equal size and selects the first

node in clockwise direction as the responsible forwarder.

Otherwise similar to [5], this approach refrains from using

uneven, logarithmic partitioning.

An approach, which cannot ensure a broadcast distribu-

tion without data redundancy, is presented in [9]. The au-

thors combine a slightly enhanced version of [5] with an

epidemic distribution. All broadcast forwarders send the

data periodically to a randomly chosen neighbor, whereby

the protocol may duplicate broadcast to the same neighbor.

All of the approaches mentioned above lack formal verifi-

cation, as well as analytical considerations regarding data

distribution in k-ary prefix trees. Most of the algorithms

are implemented on top of Chord, none of them on Pastry,

which natively offers a proximity-aware prefix routing.

A generalized construction scheme to partitioning the

key is space is presented in [7]. The authors observe that any

contractive self-mapping function P of the key space with

a single fixed point α, i.e., P (α) = α, gives rise to a parent

relationship. Based on the parent relation P (α), a reverse

path can be set up for any node α, leading to a broadcast

distribution tree with the root α. Different parent functions

thus give rise to different trees at variable roots, which may

be used for load-sharing or redundancy purposes.

DHT specific flooding has been introduced in the early

work [10] for CAN (Content Addressable Network). In

contrast to Chord or Pastry, CAN maps node IDs to regions

representing coordinates in a partitioned d-dimensional

space. CAN broadcasts the data to all geographical neigh-

bors, thereby accounting for predecessors and foresee-

able redundancies. However, the partitioning of the d-

dimensional space may be uneven and result in data du-

plication at sub-regions. Performance properties of multi-

cast on CAN are derived analytically in [16]. An extensive

simulation study of flooding and tree based overlay multi-

cast over CAN and Pastry with respect to the underlay is

presented in [4]. The authors show that CAN flooding is

outperformed by Pastry flooding, which relies on a more

efficient tree structure adaptive to the underlay.

Our implementation of the generalized prefix flooding is

similar to the Pastry flooding of Castro et al. [4]. The main

difference lies in the reactive routing maintenance, which

may result in data redundancy at the fallback forwarder [4].

The focus of their analysis of broadcast distribution lies in

the context of overlay multicast. Results are only based

on simulations. The measured metrics reflect performance

issues focusing on efforts imposed on the underlying net-

work. In this sense, our work can be understood as comple-

mentary: We presented a general prefix flooding and inves-

tigate its inherent, structural properties using an analytical

model and simulations.

7. Discussion and Conclusions

In this work, we have presented and analyzed broadcast-

ing within distributed hash tables. A general prefix flooding

approach, distributing data along prefix branches directly to

receivers, is compared to a rendezvous point-based scheme

which utilizes a shared tree rooted at a predefined anchor

peer. Several phenomena of general interest could be ob-

served.

Divergent Path Length Distributions: Our simulation

results confirm the mean hop difference of one between the

prefix flooding and the rendezvous point-based approach

Scribe. This additional, triangular hop in the overlay be-

comes noteworthy when stretched in the underlay and then

may put stress on several links. The major advantage of the

prefix flooding, though, is its quite stable concentration of

path length distribution around the average, attaining low

variations independent of the overlay size. In general, P2P

networks consist of volatile nodes. If we assume an over-

lay with regular churn, i.e., session times in the range of

minutes or larger, and a persistent number of peers on av-

erage, the DHT moderately reorganizes key associations.

Such structural modifications lead to changing paths within

the overlay and in the worst case, a single arrival or depar-

ture of a node may cause a data path to change drastically.

In the prefix flooding, the path length only changes moder-

ately for new and existing peers due to its narrow distribu-

tion. In contrast, the heavy-tailed overlay hop count distri-

bution of Scribe produces a largely inhomogeneous travel

time, which complicates synchronous applications.

Varying Replication Load: A high variation can also be

identified for the packet replication in Scribe. Similar to the

prefix flooding, it is rather likely that peers forward with

low replication load. Nevertheless, in a long tail distribu-

tion nodes are required to replicate many more packets with
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values up to 7.800 in large sized overlays of 10.000 peers.

The distribution of packet replication is thus strongly unbal-

anced, requiring very low and very high values to be served

within the same scenario. Such behavior does not only de-

grade the performance, but may threaten stability and even

cause conflicts with intrusion detection systems.

In contrast to Scribe, the prefix flooding guarantees

a replication load closely balanced around its average of

about 1. It can be tuned directly by the branching factor

k. As we know from the theoretical analysis of section 4,

packet replications occur as multiples of k − 1 in full pre-

fix space. Decreasing k adjusts the maximum number of

replications to smaller values.

An Overloaded Single Peer: The peers with extraordi-

narily high packet replication load in Scribe have been iden-

tified as the rendezvous points (RP). An appropriate treat-

ment of such service nodes becomes more important under

the aspect of unbalanced packet replication, but poses a se-

vere conceptual problem in DHTs: The placement of this

entity should account for node and network capacities, but

in a DHT is bound to the structural mapping of the multi-

cast group identifier to an overlay key. Any alternative ap-

proach, e.g., selecting the RP address independently of the

group address, will break the key space semantic with the

result that an overlay node cannot derive the RP distribution

address automatically.

Our prefix-guided broadcast strictly adheres to forward-

directed establishment of distribution trees. We have shown

the generation of efficient group communication structures.

The presented approach is thus particularly promising for

overlay multicast services. Having sketched a structured

multicast solution operating in prefix-space [15], its elabo-

ration is subject to our currently ongoing work. Further on,

we will integrate our scheme in hybrid group communica-

tion architectures [17].
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