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Network coding techniques such as fountain codes are a promising way to disseminate large bulks of data
in a multicast manner over an unreliable medium. In this work we investigate how to conceal such an
encoded data stream on its way to numerous receivers with a minimum investment. Compared to conven-
tional ‘encrypt – encode/decode – decrypt’ approaches, our solution is preferable for two reasons: First, it
causes less CPU investment for encryption and decryption proportional to the ratio of the payload length
to the signaling data length. Second, besides obfuscating the payload data from an eavesdropper, we hide
the coding information from an eavesdropper. We evaluate the approach with respect to its application to
various data types like MPEG-2 video streams and Java bytecode.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In network coding transmission, an intermediary node can
combine different packets together in order to reduce the number
of transmissions, and thus increase the overall throughput of the
network. To disseminate bulks of data over an unreliable medium
to numerous receivers, rateless erasure codes, aka fountain codes,
are an efficient way to cope with various packet losses, and reduce
the need of a feedback channel. In its simplest form, a packet is
composed of a payload x of network encoded data, and the
metadata c, the coefficient vector. c carries the information which
of the plaintext packets p1, . . . ,pn contributed to form x. We con-
sider the case where the encoded packets are XOR combinations
of several source packets, and the metadata are bit-vectors of size
n-bit. The receiver can decode the received encoded packets by
solving the linear equation system formed by the received c s.

In a multi-hop propagation scenario, a forwarding node may not
only want to forward received encoded packets (xi,ci) but also gen-
erate freshly encoded packets (xf,cf) by combining a subset of the
already received encoded packets. Therefore, the node is required
to compute xf ¼ �l

i¼1xi and cf ¼ �l
i¼1ci. In the state of the art, the

coefficient vector c that describes how the different plaintext pack-
ets were combined remains in clear-text, i.e. every intermediate
node knows, which source plaintext packets pi contributed to the
ll rights reserved.
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received encoded packet. For example, assuming that the data
stream is subdivided into packets p1, . . . ,p8 and in case the ci equals
the bit string 00000101, hence the encoded packet xi has been gen-
erated by combination of the plaintext packets p1 and p3.

The introduced network coding paradigm has recently been ap-
plied to various applications, such as peer-to-peer data streaming
or WSN code image update to name only a few. Obviously, there
is a growing need to enrich such novel concepts with security
means. Solutions regarding the integrity and authenticity of
incoming encoded packets have already been proposed in
[12,4,5]. Nevertheless, there is currently almost no work which
explicitly deals with the confidentiality of encoded data. Excep-
tions are [3,1], the latter is the early version of this work. Two
reasons may explain this: one can argue that the encoding in itself
is already a weak mean of concealing the data and therefore no
more additional protection is required. Examples following this
direction are [4,6] assuming that the attacker can eavesdrop only
on a subset of all transmission paths between source and destina-
tion (s). One can also argue that there is no research challenge in
weaving confidentiality into the network coding paradigm by
applying a cipher E: the only decision to be taken is whether to en-
crypt on the plaintext data or to encrypt on the encoded data. It is
further possible to transmit either (E(xi,ci)) or (E(xi),ci), or to apply
the encryption on the plaintexts already E(pi) before generating the
xi. We state that all approaches, including ours, have their draw-
backs either with respect to security, CPU investment or with re-
spect to the flexibility for generating new encoded packets on its
way to the final multicast destinations.

Our contribution: The contribution of this work is to conceal
respectively obfuscate the data stream of network encoded pack-
ets, while allowing intermediate nodes to generate new encoded
ork coding, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.11.004
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packets based on already received ones. This is done in a light-
weight manner by purely hiding the information about the compo-
sition of the encoded packets. Examples where we see value for our
solution are environments with restricted devices and/or in cases
where energy saving of security enabled devices due to eco-IT as-
pects is of relevance. This may be a desirable feature particularly
for wireless mesh networks. We evaluate our results with respect
to two types of data streams: MPEG-2 video streams and Java
bytecode.

2. Related work

Cai and Yeung introduced the problem of using network coding
to achieve perfect information security against a wiretapper who
can only eavesdrop on a subset of the transmission paths between
source and destination(s) [4]. Feldman et. al. generalized and sim-
plified the method by showing that the problem is equivalent to
finding a linear code with certain generalized distance properties
[5]. Tan and Medard have investigated a network coding scheme
that has both a low network cost and a low success probability
of the wiretapper [6]. Other improved solutions against a wiretap-
per have been proposed in [8,9]. However, in a wireless network
scenario like we are assuming, an eavesdropper may collect pack-
ets which have been sent by the source. There have been other pre-
vious pieces of work relevant to the security of network coding
which has been focused on pollution, in which the attacker nodes
inject bogus packets in the network [11,13]. These contributions
are mainly addressing the authenticity of the data sent by a legit-
imate sender, but do not provide any confidentiality. Jaggi et.al.
introduced a solution that works in the presence of Byzantine
nodes [14]. Ho et. al. has also referred to Byzantine modification
detection [15]. There have been several research regarding a
trade-off between network cost and network vulnerability for mul-
tipath traffic in wireless ad hoc networks [16,17]. When the link is
to be resilient against wiretapping, multiple disjoint paths may be
used. In general, it causes an increase of the network cost.

A similar approach to ours has been presented by Fan et al. [3].
They also propose to encrypt the coefficient vector. However, con-
trarily to our approach they use a public key based privacy homo-
morphism. Moreover, their focus is on convergecast traffic, where
sensors report data to a sink node. The solution has the advantage
to also provide source anonymity, since the source ID is masked as
it is implicitly contained in the coefficient vector. However, their
solution is not very practical, as the privacy homomorphism which
they rely on produces a very large cipher. Hence, the encrypted
coefficient vector that is sent over the network is growing to a
few mega byte.

3. Network and adversarial model

3.1. Network model

The goal of the network is to transmit large bulks of data (i.e.
larger than hundredfold the MTU size) which are fully available
at the sender side in a multi-hop manner to a multicast group.
The network medium is considered to be noisy and highly error-
prone. This is why we believe our solution is most promising in
wireless environments. The network model consists of numerous
(wireless) nodes distributed forming a connected graph. We as-
sume that the set of nodes is partitioned into three distinct roles:
source, forwarder, and receiver. We assume that during the trans-
mission of the data, the receivers remain connected to the source,
possibly over several hops. There can be several sources, and for-
warders can come and go. However, in this work we will keep a
model with only one source, and the network remains static. We
assume a flow of data that comes from the source to the set of
Please cite this article in press as: A. Hessler et al., Data obfuscation with netw
receivers, and possibly relayed by the set of forwarders. A for-
warder distinguishes itself from a receiver by the fact that it is
not interested in the data, but cooperatively forwards it, such that
eventually all the receivers completely collect the data transmitted
by the source. Furthermore, a routing overlay has to be available
such that the diffusion of the data can be achieved efficiently. Such
an overlay is build upon an interest for the data transmitted by the
source. To enhance the resiliency against eavesdroppers, a multi-
path message propagation is advisable.

3.2. Adversarial model and security requirements

We assume that the attacker is omnipresent and thus is in com-
plete control of the wireless channels over the whole network. She
can eavesdrop packets over the wireless broadcast medium or con-
trol the communication channel to delete, modify, and send data.
However, she cannot capture nodes from the receiver or the source
sets. As the forwarders do not have to store any sensitive crypto-
graphic material, their capture is irrelevant in our model. In this
sense, our adversary model is in line with the classical Dolev-Yao
threat model [2]. Finally, an attacker should not be able to interfere
with the decoding process infinitely. We assume to have a mecha-
nism to recover from injection attacks: Once she stops attacking
actively the network, the receivers shall be able to decode correctly
the source data.

The security goal we are aiming at in this work at hand is to
obfuscate the data while minimizing computational and transmis-
sion overhead. Of course, other means like ensuring authenticity
and integrity of the encoded data are also important. An exemplary
approach for the latter protection aim is described in [12].
4. CNC – concealed network coding

Our approach which we termed Concealed Network Coding
(CNC) is simple but meaningful: we propose to encrypt the coeffi-
cient vector instead of the encoded packet such that (x,E(c)). To
avoid giving up any flexibility regarding the composition of new
and meaningful encoded packets on its way to the final destina-
tion, E should belong to a specific class of encryption transforma-
tions. It should belong to the encryption transformation class of
privacy homomorphisms, such that it holds E(a � b) = E(a) � E(b)
for any plaintext pair a and b, a properly chosen additive operation
� on the ciphertext, and another additive operation � on the plain-
text. The benefits for such a construct (x,E(c)) are manifold:

� Although the encoded payload x is not directly encrypted, the
fact that the coefficient vector is encrypted provides obfusca-
tion for x too; Recall that x is a random combination of d plain-
text packets neither providing any information about the
concrete d nor revealing the chosen plaintext packets denoted
as p1, . . . ,pd without loss of generality.
� Although the encoded payload x is implicitly concealed, still

meaningful and syntactically correct network coding on two
(or more) encoded and encrypted packets (xi,E(ci)) and (xj,E(cj)),
can be performed: (xf,E (cf)) = (xi � xj,E(ci) � E(cj)); the opera-
tion� is the concrete encoding operation, e.g. in the easiest case
the bitwise XOR operation, which is in fact an addition in the
vector space Fn

2; however, it is essential to point out that other
operations may also be possible.
� In a setting with E(x,c), such an in-network coding approach on

encrypted data is only possible if E() is homomorphic respectively
to the operation�. This property is not achieved by many ciphers.
� Since c is encrypted, the attacker cannot modify encoded pack-

ets at will, she lacks the knowledge of which packets she is com-
bining together.
ork coding, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.11.004
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Table 1
Overview table for used variables.

Variable Explanation

p Plaintext packet
x Encoded packet
c Coefficient vector
d Degree of encoded packet
Xl Degree distribution at location l
E, D (Homomorphic) encryption resp. decryption function
X Matrix composed of m encoded packets p
C m � n matrix of n linear independent coefficient vectors c
P Matrix of cleartext packets
~x; eX Bogus data chunk, bogus set of data chunks

IV Initialization vector

A. Hessler et al. / Computer Communications xxx (2010) xxx–xxx 3
� Finally, please note that encrypting/decrypting a small c is less
CPU consuming than encrypting a much larger encoded packet
x. It requires jcj

jxjth of the ciphering costs if the homomorphic
encryption and decryption functions E() and D() cause similar
CPU consumption than e.g. an RC4 based ciphering.

Using this privacy homomorphism based encryption approach
for obfuscating network-coding based multicast traffic, an inter-
mediary node can still apply network coding on the packets it for-
wards, but has no indication of what it is transmitting.

Let us define the privacy homomorphism transformation as
E(p,k) and its associated decryption operation as D(e,k). Here p
and e represent the plaintext and the encrypted text respectively,
and k denotes the key. For an instance of k and p, it holds that:
p = D(E(p,k),k). Furthermore, it holds: p1 � p2 = D(E(p1,k) �
E(p2,k)).

Now at the intermediary node, a node can combine two or more
encoded packets together thanks to the privacy homomorphic
transformation. For example, if the intermediary node had
received: (x1, E(c1,k1)) and (x2,E(c2,k2)), it can combine them into
another encoded packet (x1 � x2,E(c1, k1) � E(c2,k2)); please note
that the notation indicates that we are applying a symmetric
homomorphic encryption scheme using pairwise keys. However,
the proposed concept also works with other homomorphic encryp-
tion schemes, e.g. symmetric and groupwise keys but also asym-
metric homomorphic schemes. Various homomorphic encryption
transformations have been discussed in the literature. For example,
a symmetric one with pairwise keys has been proposed by Castel-
luccia, Mykletun and Tsudik [18]. A candidate for an asymmetric
additively homomorphic scheme is the EC-ElGamal [19]. An over-
view on available schemes can be found in [10].

4.1. A proposed derivate

For a concrete setting of CNC we propose to apply the symmetric
additively privacy homomorphism (PH) from Castelluccia et al. [18]
with Ek(c) = c + k mod n and Dk(Ek(c)) = Ek(c) � k mod n where
c 2 [0,n � 1]. However, instead of applying it on the ring Z=nZ with
the + operator like in [18], we apply the transformation on the vector
space Fn

2 with �. To build this PH, we need to produce a key stream
using a stream cipher. To ensure that no pair of encrypted vectors
is using twice the same keystream, the sender applies for each
encryption a unique initialization vector IV. For this CNC derivate
the source node encrypts the coefficient vector ci of each encoded
packet with a different initialization vector IVi for all transmitted
packets such that the packet content is fxi; Ek;IVi

ðciÞ; IVig. An interme-
diate node that generates a new encoded packet xf from two (or
more) encoded packets xi and xj is computing xf = xi � xj and
Ek;IVi ;IVj

ðcf Þ ¼ Ek;IVi
ðciÞ � Ek;IVj

ðcjÞ. Subsequently, the intermediate
node transmits ðxf ; Ek;IVi ;IVj

ðcf Þ; IVi; IV jÞ. The initialization vectors
can tell the attacker how many times encoded packets were com-
bined. This is not an issue, as we do not assume that the degree dis-
tribution is secret. At the final receiver side (one node out of the
multicast group), an incoming message x; Ek;IV1 ;...;IVl

ðcÞ; IV1; . . . ; IVl is
decrypted before the decoding starts: c ¼ DkðEk;IV1 ;...;IVl

ðCÞÞ. The
decryption process is simply to generate all the keystreams that have
been used by the sender, using the received IVs, and XOR them to the
ciphertext. The keystreams are cancelled out such that the coding
vector c is revealed.

Please note that originally the PH from Castelluccia et al. was
proposed in a setting for convergecast traffic with the number of
keys corresponding to the size of the convergecast group. In such
a setting the list of key Ids to be transmitted could easily explode.
However, in our setting for multicast traffic the size of the IV list (l)
corresponds to the number of combined encoded packets that orig-
inate from the source, such that it will always be reasonably small.
Please cite this article in press as: A. Hessler et al., Data obfuscation with netw
5. General remarks on CNC

We start the discussion on CNC by providing some general re-
marks with respect to its overhead, the decoding process itself,
the security parameters, the ratio of jxj and jcj, and the impact of
blind aggregation respectively decoding on the fountain code. Ta-
ble 1 gives an overview for the most relevant variable used in
the text.

5.1. Network overhead

Let us assume that a group of receivers wants to extract the data
stream p1, . . . ,pn. To be able to successfully perform the decoding
process, each receiver must have received n + D encoded packets.
D is the fountain code packet overhead, which is listed in Table 3.
Thus, the source has to transmit in average more than n + D encoded
packets xi, to account for the network losses that might occur.

5.2. Decoding

Decoding (without the proposed encryption approach) works
by solving a linear equation system X = CP. C needs to be a m � n
matrix of n linear independent coefficient vectors c, i.e. rank(C) = n.
X is the matrix composed of the m received encoded packets x, and
P is the matrix of cleartext packets, each row relating to one clear-
text packet. In the case of LT codes [20], the decoder is using a be-
lief propagation decoder instead of the Gaussian elimination
technique. Therefore, as it requires decoded packets to further de-
code encoded packets, the degree distribution should contain low
degree packets, of which a few are of degree one. Hence, the degree
distribution is often some derivate of the ideal soliton distribution.
The LT decoder has linear complexity in regards to n, but has more
packets overhead (D). With our concealment approach an attacker
has no information about the matrix C, thereby trying to infer P out
of X with no additional information.

5.3. Security parameters

Since the proposed CNC approach is lightweight, it has some
potential weaknesses. The attacker has some means to break the
system independently of the concrete security strength of the cho-
sen underlying homomorphic encryption transformation. Parame-
ters of relevance are.

(i) the concrete value of the degree d (the number of cleartext
packets that are used to generate a specific encoded packet)
or more generally the chosen degree distribution X to
encode the packets;

(ii) the entropy respectively the redundancy of the cleartext
data;
ork coding, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.11.004
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(iii) the number of cleartext packets n into which the cleartext
data stream is subdivided. A more thorough analysis follows
in Sections 6 and 8.

Please note that with such an approach of merging two or more
encoded packets xi and xj, the resulting encoded packet always
contains either one or zero plaintext contribution per plaintext
but definitively not more. This comes due to the fact that the
XOR operation cancels out an even number of the same bit-stream
(plaintext packet). Our encryption approach on the coefficient vec-
tor supports such an encoding characteristic since the homomor-
phic operation on encrypted coefficient vectors represents this.

5.4. Impact of jxj

Generally, the size ratio is jxj � jcj; The size jcj reflects the num-
ber of plaintext packets in which the whole data stream is subdi-
vided whereas the limiting factor of jxj basically is limited by the
MTU of the network or other parameters limiting the packet size
(e.g. Ethernet 1500 byte, e.g. 1480 byte IPv4 data). One can also
consider settings, e.g. in WSNs with IEEE 802.15.4 and a huge data
stream to be transmitted; here, since jxj � 40 byte the above ratio
is much smaller.

5.5. Impact of blind aggregation on the fountain code

We want to point out that in a multi-hop scenario with in-net-
work encoding on received packets (xi,E(ci)) the degree distribu-
tion chosen at the source node Xsource will change over the
various hops. This is true since for an intermediate node the encod-
ing is fully random. After k combinations of already encoded pack-
ets, the degree distribution can be denoted as

Xkðd ¼ wÞ ¼
Xn

i¼0

Xn

j¼0

Xw�1ðd ¼ iÞ 	Xsourceðd ¼ jÞ 	 Pn
i;jðd ¼ wÞ; ð1Þ

where Pn
i;jðd ¼ wÞ is the probability of obtaining a packet of degree w

when combining two random packets of length n and degrees i and
j, derived from a hypergeometric distribution:

Pn
i;jðd¼wÞ¼

0 if w< ji� jj;
0 if w>n�jiþ j�nj;
0 if ji� jj�w odd;

maxði; jÞ
iþj�w

2

 !
	

n�maxði; jÞ
minði; jÞ� iþj�w

2

 !
n

minði; jÞ

� � otherwise:

8>>>>>>>>>>><>>>>>>>>>>>:
ð2Þ

Fig. 1 shows the degree distribution ‘‘degeneration’’ with the number
of original encoded packets combinations, with an initial Xsource =
‘ideal soliton distribution’ at the source with Prðd ¼ 1Þ ¼ 1

n and
Prðd ¼ kÞ ¼ 1

kðk�1Þ. After a few hops and random combinations

performed by forwarder nodes, we end up with a degree distribution

that approaches the binomial distribution Prðd ¼ kÞ ¼ n
k

� �
pkð1� pÞn�k with p ¼ 1

2. We conclude that blind aggregation from
the forwarders in CNC is inappropriate with a LT decoder.

6. Security analysis

Our security analysis distinguishes two types of attackers: At-
tacker A purely eavesdrops the system and has no information
other than the x1, . . . ,xm packets that she eavesdropped. Here m
is at most the number of packets sent by the source. We consider
Please cite this article in press as: A. Hessler et al., Data obfuscation with netw
that the attacker has always captured enough packets for the
decoding process to succeed. Attacker B tries to break the system
with ‘some’ additional information.

6.1. Attacker A

Let us consider a data stream subdivided into n plaintext pack-
ets and let di be the degree chosen for any concrete encoded packet
xi. To break our system the attacker is required to solve the linear
equation system X = CP without knowing the matrix C. Moreover,
for each row i of the n �m matrix, the probability that a guessed
vector ~ci corresponds to ci for the concrete xi can be expressed as
the binomial coefficient:

Prð~ci9ciÞ ¼
1
n

di

� � ¼ di!ðn� diÞ!
n!

: ð3Þ

For a brute force attack, the probability for guessing the whole ma-
trix at each try and thus obtaining all plaintext packets is

PrðeC9CÞ ¼
YnþD

i¼1

di!ðn� diÞ!
n!

: ð4Þ

Please note that even if the attacker can guess with probability
Prð~ci ¼ ciÞ row i of C, she is not enabled to proof on a row-wise basis
that her guess was correct. Verifying (by decoding) would only
work when she correctly guesses the full matrix C. This is an impor-
tant aspect since obviously, breaking the system by pure guesswork
is not possible and we can infer that an attacker who has no addi-
tional knowledge than the stream of encoded packets x1, . . . ,xm it-
self, will not be able to break our scheme other than brute force.
For a C of dimension (n + D) � n brute force has to be done on a
possibility space with size 2n+(n+D). Even with an unrealistically
small data stream with e.g. n = 10 we end up with a chance for
breaking the system of about 10�4.

6.2. Attacker B

However, it is more realistic to assume that the attacker has
some additional knowledge, let it be on the degree distribution X
as well as on the structural information of the plaintext packets
pj. More details on the latter fact and its impact on the overall
obfuscation level will be provided in Section 8. We consequently
assume that the attacker can recognize a packet with degree
d = 1, that is a cleartext message. Next, we discuss how this influ-
ences the provided obfuscation level of CNC.

Let us assume for the moment that the attacker already knows a
pool Xcaptured of m messages x1, . . . ,xm. In the most general case
m > n. Furthermore we assume that an attacker can distinguish a
plaintext packet e.g. due to its structuring or other means from
other encoded packets. If this is not given we are back in the argu-
mentation line described for attacker A. Then, as long as it holds
m < dmin � 1 with dmin being the minimum degree in all transmit-
ted encoded packets described by Xsource, the attacker can not
decode respectively deobfuscate a single transmitted packet xi.
However, for the case m P dmin � 1 there may eventually be situa-
tions in which the attacker can decode an encoded packet and thus
increase the pool to jPnewj = jPoldj + x elements (Note that jPj = n
means the total break of the system). Based on its pool of packets,
the attacker can combine packets at will using the network coding
operation, and might recognize packets of degree one. If this hap-
pens, she increases the set of decoded packets Pdecoded. Further-
more, she can use the packets from Pdecoded to further ‘‘blindly’’
decode packets in Xcaptured. In particular degree distributions Xsource

like ‘ideal soliton distribution’ are vulnerable for such kind of at-
tacks, since many packets have low degrees. The ‘robust soliton
distribution’ is even more vulnerable, as it contains more unencod-
ork coding, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.11.004
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Fig. 1. Degree distribution degeneration of encoded packets due to in-network combination (n = 64).
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ed packets (di = 1). Fig. 2 shows the amount of packets that can be
determined by an attacker considering variable sizes of n and K.

One can notice that by combining as few as m
K

� �

 2n packets to-

gether, the attacker can find out about 70% of the packets with
n = 64, m = 96 and K = 6. K denotes the maximum number of pack-
ets being combined together. Furthermore, the attacker can use
this pool of decoded packets to continue its attack. The attack
shown in Fig. 2 only uses eavesdropped packets, and does not take
advantage of newly decoded packets. So it is a lower estimate of
the capacity of the attacker.

However, if the source degree distribution is binomial, then this
attack is impractical. Combining two or more packets from this dis-
tribution yields a packet with the same binomial degree distribu-
tion. Therefore, obtaining randomly a source packet is extremely
unlikely and makes this attack unprofitable for the attacker. Never-
theless, such a source distribution is not the panacea, as it has a
negative impact on the decoder performance. The main lesson
learned is that Xsource and the structural information of the source
data have an impact on the obfuscation level provided by CNC.

Remark: From our general remarks in Section 5 on the impact of
blind aggregation on the fountain codes we know that in a multi-
hop data propagation scenario the degree distribution anyhow re-
sults in a binomial degree distribution. To ensure more resistance
against attacker B (which may eavesdrop at the optimal location
directly at the source node) and due to the fact that anyhow the
Fig. 2. Brute force attack with attacker B: obtaining source packets

Please cite this article in press as: A. Hessler et al., Data obfuscation with netw
receiving nodes in presence of CNC have to decode based on a bino-
mial degree distribution, we conclude to also choose Xsource =
‘binomial degree distribution’ at the source node.
6.3. Additional countermeasures

In addition to the proper choice of Xsource, we observe that we
have four countermeasures for increasing the obfuscation level,
each with its different pros and cons:

(i) Disallow low degree packets: choosing a X with a threshold
Tdrop s.t. Pr(di) = 0"i 6 Tdrop which is significantly higher than
one, e.g. Tdrop = 3 or Tdrop = 4; Such a choice impacts the CPU
consumption for the decoding process at the receiver side.

(ii) Encrypt low degree packets: encrypting all encoded packets
with degree di 6 Tenc as follows: E(xi,ci). Thus, only a fraction
of all encoded packets are encrypted in this traditional way.
This reduces considerably the initial pool Pdecoded of the
attacker and therefore increasing the overall security level
for all transmitted encoded packets (also with d > Tenc) sig-
nificantly. At the same time there is only a marginal increase
of overhead due to the amount of data to be transmitted for
sending and receiving (one could use a normal streamcipher
for the encryption of all packets with degree d 6 Tenc) by still
being able to encrypt for a large fraction of encoded packets,
from combining eavesdropped packets together. (m = 1.5 	 n).

ork coding, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.11.004
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Table 2
Location of overhead for CNC extensions and their impact on the obfuscation
robustness.

Source Forwarder Receiver Obfuscation

(i) dmin P Tdrop – – (cpu) +
(ii) E(xi) with di 6 Tenc (cpu/msg) (msg) (cpu/msg) ++
(iii) � packets ~p (msg) (msg) (msg) +
(iv) Input obfuscation (cpu) – (cpu) +
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namely Pr(d 6 Tenc) = 1 � Pr(d > Tenc), only the coefficient
vectors and being flexible for in-network processing. Recall
that in most settings jxj � jcj.

(iii) Increase attacker decoding cost: make use of well marked, well
structured bogus plaintext packets ~p. This is a pollution attack
against the attacker. The source injects a portion of encoded
packets ð~xi; ci ¼ Eð‘do not use0ÞÞ that cause noise for the
attacker but can easily be filtered out at the receiver side by
decrypting the ‘coefficient vector’. Encoded packets which
are classified with a do_not_use tag will not go into the equa-
tion system X = CP such that the receiver can be assured (recall
that we are only discussing passive attackers) that he can suc-
cessfully decode the linear equation system if it holds
rank(G) = n. On the other hand the attacker cannot differenti-
ate a cheated plaintext packet ~p from a plaintext packet
belonging to p1, . . . ,pn. Consequently, after a while her pool
will be filled up like Pdecoded ¼ fp1; . . . ;pr�1g [ f~pr ; . . . ; ~pmg
whereas the genuineness of packets p and ~p are undistin-
guishable for the attacker. Recall that the coefficient vector
of each xi is encrypted such that the attacker does neither
know the concrete plaintext packets which have contributed
nor does she know the concrete degree d of the actual packet.
Under such circumstances if only one single packet ~p will be
part of an decoding attempt for an ~xi decoding will always fail.
This approach requires the transmission of n + D + � packets,
therefore increasing the sending and receiving effort at any
involved node. Furthermore, as the forwarder nodes cannot
identify bogus packets, further encoding by the forwarders
is not possible here. However, the pure decoding process at
the final receiver nodes is not increased (excluding the
decryption and subsequent skipping of packets ð~pi; EðciÞÞÞ.

(iv) Input obfuscation: we have seen previously how easy it is for
an attacker to break CNC if low degree of encoding and rec-
ognizable source data are employed. To thwart this, we
could pre-code the input symbols by applying an outer code
to spread out over the input symbols. It spreads out the
structured input symbols over all the symbols by bit-wise
spread code and hence cannot distinguish a plaintext packet.
Compressing the source data before the CNC transmission is
also a good counter-measure to prevent statistical attacks as
we will see.

Table 2 summarizes for which node’s role the overhead of the
proposed solutions have an impact on.

Table 3 summarizes the different network coding variants with
the overhead and obfuscation parameters [21]. Not surprisingly,
there is a trade-off between decoding efficiency and the provided
Table 3
Various fountain codes techniques.

Encoding complexity Decoding com

Send As Is O(1) O(1)
Raptor Codes H(1) O(n)
Unif. rand. H(n) H(n3)
LT Codes O(logn) H(nlogn)

Please cite this article in press as: A. Hessler et al., Data obfuscation with netw
obfuscation level. For more explanation, we refer the reader to
the Appendix A.
7. Benefits of CNC

Our analysis regarding the CNC approach and its variants is fol-
lowing three axes: computation effort, security level, transmission
overhead.

– computation effort: With some simplification we can state that
the larger the ratio jxj/jcj, the more advantageously is CNC com-
pared to a traditional encryption approach. However, we want
to point out that this statement only holds under the assump-
tion that the chosen homomorphic encryption function has sim-
ilar CPU consumption as e.g. the stream cipher RC4. This
statement holds for the chosen symmetric homomorphic
encryption transformation.

– security level: Obviously the security level of CNC cannot com-
pete with a traditional symmetric stream-cipher e.g. RC4 or a
block-cipher e.g. AES based encryption of E(x,c). However, in
particular when enriching our approach with one of the pro-
posed extensions, the achieved obfuscation level is by far more
than ‘better-than-nothing’ security. We will provide some more
insight with respect to the obfuscation level provided by CNC in
Section 8.

– transmission overhead: The overhead for the transmission costs
when applying pure CNC is equivalent to the data overhead
when encrypting the full packet in a traditional way. Both
approaches, pure CNC and the traditional one, are causing
approximately 10% overhead depending on the chosen security
parameter, e.g. with a data size of 1 KB and a MTU of 40 B. How-
ever, for the extension (iii), which is injecting packets, we have
to face additional transmission overhead. For the extension (ii),
which consists in encrypting low degree packets, there is less
transmission overhead because of low rate of degree one.
Otherwise, for the other extensions, there is no transmission
overhead.

In Fig. 3, we display the results for the case the data size to be
transmitted is 1 Kbytes, the MTU is 40 bytes and the IV is three by-
tes. A setting that represents WSNs. It shows that the size of the
transmissions made in CNC including security extentions (i) and
(iv) is about 10% bigger compared to fountain codes with no secu-
rity, however equivalent to the size where encrypting the whole
packet in a traditional way except for cases of different number
of packets to be transmitted because CNC could be adapted by
compressing multiple IVs. Furthermore, it also shows that applying
extension (iii) is 1.5 times larger compared to CNC. On the other
hand, extension (ii) is slightly larger than CNC because of the low
rate of degree one packets. Although we study only the transmis-
sion cost, there is also a corresponding receiving cost associated
to every transmission and each receiver.

The discussion of these three axes shows that CNC, together
with its extension (ii) that encrypts low degree packets and exten-
sion (iv) that obfuscates the source data, is a good choice in all set-
tings where the encoded part of a packet is significantly larger than
plexity #packets Obfuscation with CNC

n None
(1 + �)(1 + �0)n +
n + H(logn) ++
n + H(n) +
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the coding vector itself. Here, CNC has a clear benefit, in particular
since the reduced CPU-costs at the source and receiver side for
encryption and decryption are not overcompensated due to over-
head for sending and receiving of additional data. Clearly, since
at this moment we cannot provide a proper analysis of the
achieved obfuscation level but only educated guesswork, we rec-
ommend our solution only in settings where weak respectively
moderate security is required. In all other settings the traditional
encryption approach is preferable.
8. Impact of recognizable data

This section revisits the implicit pre-assumptions we made in
the security analysis of Section 6 with respect to the attacker A
and the attacker B and which we believe is worth being analyzed
more in depth: an encoded packet x does not provide enough struc-
ture to infer the contributing plaintext packets p. For the attacker A
one pre-assumption even means that she can not distinguish a pack-
et p (d = 1) from a packet x (d > 1) by analyzing their structuring.
8.1. Preliminaries

We start our discussion by looking at MPEG-2 video streams:
Regarding the structural information of an intra-coded (I)-frame,
an predictive-coded (P)-frame or a bidirectionally-predictive-
coded (B)-frame, we observe that each frame contains a structured
part with MPEG-2 signaling data and the payload part containing
relatively unstructured information. An unstructured sequence is
a series of bits whose values follow a probability distribution close
to the uniform one. For the MPEG-2 file, this property is provided
by the compression of the image blocks and motion vectors. We
will show that with a properly chosen degree d (from a properly
chosen degree distribution X for the fountain encoding) and some
shifting operation if required, one can almost nullify these struc-
tural information for an encoded packet x such that without any
additional knowledge an encoded packet x with d > 2 does not re-
veal any information with respect to its content, respectively the
Please cite this article in press as: A. Hessler et al., Data obfuscation with netw
involved packets p. Obviously, this additional information comes
with the coefficient vector c.

To clarify the above statement consider two cleartext packets p1

and p2. Without loss of generality and independently if the
concrete packets consist of I-frame, P-frame or B-frame chunks
we can denote a cleartext packet as p = s . . .su . . .us . . .su . . .u where
the s is a bit of a structured bit-sequence and the u is a bit of an
unstructured bit-sequence. We observe that an encoding operation
of degree d = 2, namely x = p1 � p2 results in an encoded sequence
with bits s = s � s, u = s � u, u = u � s and u = u � u. As an example
consider the encoding of two unrealistically small one byte-plain-
text packets:

p1 ¼ ssuuuuuu;

�p2 ¼ ssuussuu;

x ¼ ssuuuuuu: ð5Þ

Obviously an u-bit is dominant and valuable with respect to our
request in the sense that it nullifies an s-bit. This characteristic
becomes even more significant with any d > 2. By XORing d � 1 s-
bits with a single corresponding u-bit always results in an u-bit in
the resulting encoded packet x.

We observe that fountain codes in itself provide obfuscation
under the following prerequisites:

1. the coefficient vector c is concealed (with CNC);
2. avoid sending encoded (and unencrypted) packets of degree

d < 4 (or d = 2 when compressed);
3. avoid bits s in x which result from s = s1 �	 	 	�sd;

A more substantial validation on (2) and (3) will follow in the
subsequent benchmark section for MPEG-2 video streams and Java
bytecode, both, with compression and without compression.

8.1.1. Remark
An encoded packet x with d = 2 is precisely an expression

p1 � p2 known as the result of an attack against WLAN’s first gen-
eration security protocol Wired Equivalent Privacy (WEP) where the
ork coding, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.11.004
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originally weaved in keystream k could be eliminated from two ci-
phers c1 = p1 � k and c2 = p2 � k such that

ðp1 � kÞ � ðp2 � kÞ ¼ p1 � p2 ð6Þ

An attacker that obtains such an expression p1 � p2, since knowing
that it is composed of exactly two plaintext packets, has almost broken
the system. Once she gets one of the plaintext packets p1 or p2 she
can compute the other one and subsequently derive the key k. For
more details on WEP attacks and WPA we refer to [7]. This attack
clearly indicates that the CNC approach itself is required to avoid
under any circumstances that the attacker is enabled to get an en-
coded packet x for which she either knows or can derive that its ac-
tual degree is d = 2.
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8.2. Unstructured encoded packets

Ideally, we would like to solely transmit encoded packets of the
form xu = uuu . . .u. To achieve this, one can adjust the fountain
encoding process at the source node with regard to two axes:
One approach is to only allow transmission of encoded packets
with relatively high degree d. The larger the d the higher the prob-
ability that at least one u-bit position of one cleartext packet pi,
i = 1, . . . ,d is available which would then result in an xu. However,
since also for large d, and with respect to the decoding process
an inefficiently large degree, we cannot guarantee generating an
encoded packet of type xu we also propose to actively obfuscate
the packet structure at the source node. The source is aiming to
 9  9.5  10  10.5  11  11.5  12  12.5  13  13.5  14
σ

packets (14 KByte) with d=2
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 8.5  9  9.5  10  10.5  11  11.5  12
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only transmit encoded packets xu by applying the following oper-
ations in this order:

1. in the best case only combine such d packets which result in an
xu and transmit xus that contain fresh cleartext packets pi as
long as this holds; always choose the proportion of ds with dif-
ferent size according to the given degree distribution X;

2. if cleartext-packets pi remain which result in an xs with
respect to approach (1), then do x ,! p on some packets such
that their encoded combination definetively performs to an
xu; transmit them as long as this holds;

3. if only cleartext-packets pi remain which still result in an xs

with respect to approach (2), then do x ´ p on some packets
p; transmit them until every cleartext packet was included in
at least one encoded packet x (ideally xu);
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The notation x ,! p denotes a circular rightshift in p of x bits. If
in our example in Eq. (5) we could shift the bits of cleartext packet
p2 two positions to the right, we would have encoded a fully
unstructured packet xu.

p1 ¼ ssuuuuuu;

�ð2,!p2Þ ¼ uussuuss;

xu ¼ uuuuuuuu: ð7Þ

However, it may turn out that the shift operation x ,! p to some
plaintext packets may not always help to generate an xu. In such
cases, and only under such circumstances, we introduce the shift
operation x ´ p which applies x padding bits l from the left side.
For our example a 2 ,! p2 would result in the following encoded
packet.
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te value

MPEG−2 file
random bytes

file with a not encoded MPEG-2 video stream.

 150  200  250
yte value

MPEG−2 file, encoded with d=3
random bytes

ith a MPEG-2 video stream purely encoded with d = 3.
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p1 ¼ ssuuuuuu;

�2#p2 ¼ lluussuu;

xu ¼ uuuuuuuu: ð8Þ
Obviously the latter generation of an encoded packet is crucial and
we can only classify the result as xu iff the l bits are unstructured.
This can only be achieved by an extension of the encrypted part,
e.g. to x, E(c, x ´ pi) to be able to skip the leading x bits of the plain-
text pi subsequently to the decoding at the receiver side.

Preferably the source node should only apply the first two ap-
proaches to generate unstructured encoded packets. Ideally, it
Please cite this article in press as: A. Hessler et al., Data obfuscation with netw
should only apply the first approach which is appropriate for most
MPEG-2 data stream properties as we will see.

Remark (cont.): We would like to remind the reader that packets
of reasonable high degree alone are not enough to provide a good
obfuscation, and that also a proper degree distribution is impor-
tant. To illustrate this, imagine that the attacker randomly picks
two transmitted packets, say both of degree d = 3. Let the concrete
encoded packets be x1 = p12 � p23 � p31 and x2 = p7 � p12 � p31.
Now, the attacker’s aim is to cancel out some plaintext packets
and infer by statistically analysing the structure of the resulting xs

its remaining degree ds. For a ds > 2, this is not an option as our sim-
ulation results will show. However, it may be possible to distinguish
ork coding, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.11.004
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an encoded packet with ds = 2 from one with a higher degree. This
would then be an expression which in WEP ist considered as (al-
most) broken.

For our concrete example the attacker generates in analogy to
the attack shown in Eq. (6) the encoded packet xs:

x1 ¼ p12 � p23 � p31;

�x2 ¼ p7 � p12 � p31;

xs ¼ p7 � p23: ð9Þ

Due to the significantly different structure e.g. of a MPEG-2 encoded
packets with a degree of 2 compared to packets with a degree of 3
(see Fig. 4), one could argue that the attacker may be able to recog-
Please cite this article in press as: A. Hessler et al., Data obfuscation with netw
nize that the xs is exactly of degree d = 2. At this point, if one packet
(either p7 or p23) is already known to the attacker, she can also de-
code the other one.

However, please note that the results in Fig. 4 are based on the
uncompressed data. As we will see next, according to our current
analysis, for a compressed datastream it is almost impossible to
recognize the actual degree of an encoded packet.
8.3. Benchmark results

In our subsequent analysis we are aiming to estimate the prob-
ability of spotting structures in the encoded files by a statistical
analysis. These structures are based on single bytes. The alignment
ork coding, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.11.004
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of two or more byte-blocks has not been considered. Theoretically
the assembly of a file only consisting of purely randomly created
bytes (if possible) should have no conspicuous structure at all.
Therefore a file purely consisting of such pseudo-randomly gener-
ated data serves as our benchmark. If the output of the CNC has
the same features as this benchmark, we assume that neither a
prediction on the plaintext nor a prediction of the next encoded-
byte is possible. The other testfiles are a videofile in MPEG-2
format and a file consisting of Java bytecode. The MPEG-2 file
has been created with a low rate of lossy video compression and
displays in a relatively high quality. The audio layer has been
removed. The Java bytecode is archived in a JAR file and does
not contain any Java documentations. The archive is not further
compressed.
Please cite this article in press as: A. Hessler et al., Data obfuscation with netw
Our test environment contains two basic functions. The first
function generates the histogram of the occurrences of a one-byte
character set. Its input parameter is the testfile. To generate the
histogram we use 256 counters to represent each state of one byte.
The file is read one byte at a time. For every byte read, the referring
counter is increased by one. Eventually each counter displays the
absolute frequency of each state. To make a better distinction be-
tween an even frequency distribution and the random bytes, we
use a second function to count the margins between the occur-
rences of an octet given as input symbol. The margin is represented
by a counter, which contains the number of characters that ap-
peared between the last and the next occurrence of the octet. Since
we want to count all margins, the number of counters we use cor-
relates with the absolute frequency of this byte, counted in the first
ork coding, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.11.004
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function. So we use one counter for each occurrence of this octet.
To count the margins, the file is parsed one byte at a time. The goal
of each step is to find the input character (octet). If the parsed byte
does not equal this character, its referring counter is increased by
one. Once the byte equals the input character the next counter is
used. At the EoF each counter represents the actual number of
characters between each occurrence of the input state. This is done
for all states of one byte.

In a first approach we analyze the quantity of all possible states
of one byte. Secondly we check the frequencies of such. Figs. 4 and
5 show the standard deviation from an equal distribution of each
encoded packet. Figs. 6–13 show the histogram of the hole data-
stream considering all 256 characters representable by one byte.
As shown in Fig. 6, a not further coded MPEG-2 file shows a
relatively high structural occurrence compared to the referred ran-
dom bytes. At this point the byte 0 � 00 is especially remarkable.
Since it is one of the most relevant components in the structural
information of an MPEG-2 file (sequence-start-code begins with
0 � 000001), we are not surprised to observe that it is the most
frequently used character. Once fountain encoding is applied to
the MPEG-2 file (here for presentation issues we purely encode
all packets x with d = 3), these structures fade quite noticeably
(see Fig. 7). Furthermore, as can be seen in Fig. 8, if the MPEG-2 file
is encoded with d = 4, the resulting encoded packets x adapt almost
completely to the structure of our referred pseudo-randomly gen-
erated file. All still noticeable peaks lie within the expected random
fluctuation. Other formats show similar effects. However, the con-
crete results primarily depend on the characteristics of the under-
lying file format. As can be seen in Fig. 10 the result using Java
bytecode encoded with d = 8 is not as promising. As depicted in
Fig. 11 a degree of 45 is needed to achieve the same results as
for the MPEG-2 video stream. The gap between the byte values
127 and 128 seen in Fig. 10 is a result of the initial frequency of
the Java bytecode (see Fig. 9) in which mostly the byte values
between 0 and 127 appear. This structure in the initial frequency
distribution is a lot harder to obfuscate by randomly � plaintext
packages.

If the testfile is now compressed before the encoding is applied
the format dependency can almost be nullified. Most redundant
information is reduced, thus decreasing the structural information.
As seen in Figs. 12 and 13 we now get the same results with a
degree of 2 for the MPEG-2 file and a degree of 3 for the Java byte-
code. Since compression is a practical technique to make a statisti-
cal or cryptographic analysis more difficult, this approach can well
be used to optimize the results of the obfuscation by CNC.

These effects can not only be observed by analyzing the whole
datastream but also in each encoded packet. We now use function
one for each encoded packet and calculate the standard deviation
from each packet. In Fig. 4 the difference between an encoded
packet with a degree of 2 and one with d P 2 is quite obvious.
According to our preceding thesis of an WEP-like attack, this weak
point could easily be exploited by a potential attacker. Once the
datastream is compressed before encoding, this does not hold any-
more. As seen in Fig. 5 it is now almost impossible to distinguish
the degrees from one another.

We conclude that without using compression the success of the
CNC approach is highly dependent on the underlying file format.
Once the data is compressed this is no longer the case, which
means that both in this section analyzed file formats are equally
suited for data obfuscation with network coding.
9. Conclusion

Network coding is a viable technique to optimize the resources
of a wireless network. We have shown that we can use the natural
Please cite this article in press as: A. Hessler et al., Data obfuscation with netw
obfuscating effect of fountain codes to derive security means by
purely encrypting the encoding vector, which is much smaller,
hence saving computational costs. Thus, we do not encrypt the
data itself, but we encrypt how it has been obfuscated. Our tech-
nique has the advantage to require very little overhead, and pro-
vides a better than nothing confidentiality mean. However, we
acknowledge that if the confidentiality requirement is high or
the source data too predictable, it is preferable to encrypt the com-
plete source packets with more classical approaches. The proposed
CNC solution is probably most suited in multi-hop settings with a
binomial degree distribution at the initial sender side and in addi-
tion a full encryption of low-degree packets. For such a setting, in
particular with an initial compression of the data, our evaluations
on Java bytecode and MPEG-2 data streams have strengthened our
confidence that CNC may be a reasonably good obfuscation mean
to hide the content of a fountain encoded data stream.
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Appendix A. Impact on CNC of various network coding derivates

In our case study we analyze various network coding derivates
to the limitation that CNC allows only random combination of en-
coded packets at intermediate nodes.

A.1. LT fountain code

To start the decoding process of some encoded packets on the
fly it is essential that enoded packets with a low degree, e.g. d = 1
or d = 2 are transmitted. Generally we can say that df 6

P
di of

xf,cf. Obviously the degree of the composed packet is df ¼
P

di only
in case the degrees of the received packets are not overlapping. We
can state that in case the data stream is large and the degree is
small we end up with a df 6

P
di with df near to the sum of all

di. This is true for receivers at the first hop. However, in case the
di of the incoming encoded packet is already large, e.g. di � 1/2jcj
we state that the degree of the resulting encoded packet is also
df � jcj2 . Here the probability to have a even or odd number of ‘1’-
bit per position in the various incoming coefficient vectors is 0.5,
resulting in always df � jcj2 . As we have seen previously in Fig. 1,
random (since concealed) combination of incoming encoded pack-
ets (xi,ci) due to CNC some few hops away from the source will al-
most surely result in a situation in which LT decoding is
impossible. We conclude that CNC and the LT decoder is only com-
patible in single hop scenarios or if forwarder are not allowed to
perform blind aggregation. Otherwise, a general decoder as ex-
plained in the next paragraph is needed.

A.2. Fountain code with binomial degree distribution

If the ci are randomly chosen following a uniform distribution at
the source, then the receiver can use a Gaussian elimination tech-
nique to decode when the received coefficient vectors achieve the
full rank. Under such circumstances a binomial degree distribution
has been proven to be advisable such that the effect for df to be-
come approximately jcj

2 is not a burden. However, the decoding
complexity is H(n3). For small jcj, from a security perspective, hav-
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ing a binomial degree distribution is good as it is resilient against
attacker B, as described in Section 6. If jcj gets larger, the decoding
burden becomes too high and the network coding becomes
impractical. However, for large jcj, tweaking the degree distribu-
tion with numerous low weight degrees provides both enough
security, and a lower decoding overhead.
A.3. Raptor codes

The Raptor code is a two-tier coding approach with a combina-
tion of pre-encoding and LT channel coding. The main idea is that
the receiver LT decoder does not need to recover every input sym-
bol in order to retrieve the complete set of the source packets: The
source generate d check packets and uses the LT coding on the n + d
packets. This furthermore reduces the network overhead, while
having a linear decoding complexity. However, the check packets
generated by the pre-coding could help the attacker to attack with
more ease the CNC scheme, assuming that the attacker knows
about the pre-coding parameters.
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